Enrichment of strongly differentiated CD8+ T cells in the CSF of patients with early multiple sclerosis

Samantha Jilek1, Myriam Schluep2, Laurence Guignard1, Géraldine Le Goff2, Julien Bogousslavsky2, Giuseppe Panteleo1, Renaud A. Du Pasquier1,2

1Divisions of Immunology and Allergy and of 2Neurology, CHUV, Lausanne, Switzerland

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory disease which leads to demyelination of the central nervous system [1]. CD4+ T cells have long been thought to play an important role in the immunopathogenesis of this disease [2]. In particular, this role was suggested by the data obtained in a MS animal model, the experimental autoimmune encephalomyelitis (EAE) [2]. Although considered for long as irrelevant in MS, CD8+ T cells have recently gained a renewed interest as a potential important player in MS [4,5,6]. However, the respective role of these cells early in the course of the MS is poorly understood.

Here, we aimed at characterizing CD4+ and CD8+ T cells in patients with MS, in particular those who presented with a first neurological episode consistent with MS. We examined the profile of the immune response in the blood and in the cerebrospinal fluid (CSF) of these patients. They typically presented with a first episode consistent with MS, but a diagnosis of MS had not been established yet. Patients with other neurological diseases (OND) were used as controls. A lumbar puncture (LP) was performed as part of the diagnostic work-up. To study the degree of differentiation of CD4+ and CD8+ T cells in the blood and the CSF, we used the combination of the chemokine receptor CCR7 and the human leukocyte common antigen CD45RA (T)

CONCLUSION

§ There is a higher enrichment in strongly differentiated CD6+ T cells in the CSF of patients with early MS.
§ The enrichment in strongly differentiated CD8+ T cells is particularly high in patients with early MS.
§ Our study tends to confirm the fact that CD8+ T cells play an important role in the immunopathogenesis of MS.
§ Combination of an intrathecal synthesis of IgG and a ratio of enrichment of strongly differentiated CD8+CD4+ T cells >1 might improve the diagnosis of certain forms of MS, RR-MS in particular.

REFERENCES


ACKNOWLEDGEMENTS

This work was supported by the Swiss National Foundation 3200-B0-104262 and PPOB-106716 and the Swiss MS Society to RDP.

Higher recruitment of strongly differentiated CD8+ T cells in the CSF of patients with MS than in those with OND. The determination of T cells phenotype was performed on paired samples of peripheral blood and CSF at the time of the lumbar puncture. Each symbol corresponds to difference in percentage, between peripheral blood and CSF of T cells for CD4+ (closed symbol) and CD8+ T cells (open symbol). Thus, there are two symbols per patient (one closed and one open).

- No enrichment of CD8+ in MS or OND (one closed and one open).
- CD8+ enrichment of CD4+ (MS vs. OND, Mann-Whitney test; CD4+ vs. CD8+, Wilcoxon test).
- RR-MS and SP-MS; A: PP-MS; O: OND.

The CSF enrichment in CD8+ T cells was significantly higher in MS than in OND. No such difference existed for CD4+ T cells between MS and OND patients. Furthermore the enrichment in CD8+ T cells was significantly higher than the one in CD4+ T cells in MS patients. Such a difference was absent in OND patients.

Comparison of the phenotype of T cells between the blood and the CSF compartments in two representative patients, one with RR-MS and one with OND. These analyses were performed on CD3+CD8+ and CD3-CD8+ T cells, the latter considered to be CD4+ T cells. The phenotype of these two subtypes of T cells was determined by staining with CCR7 (x-axis) and CD45RA (y-axis). Cells in the upper right quadrant correspond to naive T cells (T0); in the lower right quadrant to central memory T cells (T1); in the lower left quadrant to effector memory T cells (T2); and in the upper right quadrant to effector T cells (T3) [8]. The percentage of T cells in each quadrant is indicated. Strongly differentiated T cells (TSD) correspond to the sum of the percentage of T0 and T2. Exactly the same gating was applied between the blood and the CSF compartment.

A. In this RR-MS patient, the percentage of CD4+ T cells increased between the blood (10%) and the CSF (47%) compartment (difference: 37%) but the percentage of CD8+ T cells in the CSF (76%) compared to the blood (15%) was higher (difference 61%). In other terms, the recruitment of CD8+ T cells was higher than the one of CD4+ T cells in this patient and the difference was 61±37%, ±24% in favor of CD8+ T cells. B. For this patient with non-inflammatory OND, the picture was opposite: the recruitment of CD8+ T cells in the CSF compared to the blood (difference: 16%) was higher than the one of CD4+ T cells (difference: 0%).